As hardware, processing power and storage capacities have rocketed into the stratosphere, so has companies’ ability to solve complex, real-world business problems through the application of machine learning/AI techniques and algorithms.
In the financial services industry, however—one of the most data-rich industries in the world—companies have so far only begun to foray into the rich world of machine learning and AI.
This needs to change, according to a new report from Accenture, “Emerging Trends in the Validation of Machine Learning and Artificial Intelligence Models.”
New approaches and techniques offer much richer applications and use cases for machine learning and AI, including:
Machine learning and artificial intelligence are poised to make a big impact in financial services.
A key impediment to the adoption of machine learning and AI is how to trust a particular model or algorithm—a point consistently posed to banks by their regulators as well as their own internal control functions.
The ability to explain the conceptual soundness and accuracy of such techniques is a significant challenge, not only because the tools are so new, but also because there is an inevitable “black box” nature of some of the more powerful machine learning and AI approaches.
Two related but distinct challenges are involved here:
Compared to traditional model validation, machine learning and artificial intelligence will differ in the areas of data, processes, methodology and governance:
Data
Processes
Methodology
Governance
Addressing these challenges with new validation techniques can help raise the level of confidence in model risk management. It can also raise the confidence of regulators in the accuracy and appropriateness of emerging machine learning and AI tools in areas such as credit risk and regulatory capital management, stress testing and trade surveillance.
For more, read our report, “Emerging Trends in the Validation of Machine Learning and Artificial Intelligence Models.”