SUSTAINABLE ENERGY FOR ALL

We Commit

Business for Energy Efficiency at COP21

December 2015
CONTENTS

Sustainable Energy for All 04
We Commit: Private sector engagement 05
We Commit: Output & impact 07
The way ahead 12
Annex 15
FOREWORD

2015 has the potential to mark a turning point for climate change. It could be the year that sees the shift from climate change mobilization to implementation. Energy efficiency in particular is a crucial element in achieving the 2°C scenario. In the International Energy Agency’s (IEA) most cost-effective 2°C transition pathways, energy efficiency plays a primary role in reducing energy sector greenhouse gas (GHG) emissions. Over the period to 2020, it has the potential to account for 40 percent to 50 percent of GHG reductions. By comparison, renewables deliver the second-largest contribution to reductions at 30 percent. Thanks to energy efficiency improvements, IEA countries have avoided a cumulative 10.2 billion metric tons of CO₂ emissions since 1990. This has enabled consumers in IEA countries to spend US$5.7 trillion less on energy, while enjoying higher levels of energy service. Companies continue to invest significantly in energy efficiency, and this has yielded results. Take energy efficiency in buildings. This market was worth US$90 billion in 2014 worldwide, and is projected to increase to more than US$125 billion by 2020. Energy efficiency is a growth business!

But the world needs much more. We have all the tools, but the problem that we are facing is one of scale and acceleration. While progress has been made in global energy efficiency, the rate of improvement is still nearly a full percentage point slower than the Sustainable Energy for All (SE4All) objective of doubling the global rate of energy efficiency improvement between 2010 and 2030. To move from mobilization to implementation within the private sector, companies must break down carbon targets into energy measures. Qualitative commitments must become quantitative roadmaps. This cannot be achieved if every company works in isolation toward its goals. We need to foster cross-industry multi-stakeholder collaboration to enable efficiency and work toward goals that reflect sector contributions to decarbonization necessary for following the 2°C trajectory.

SE4All aims to foster this collaboration with its We Commit campaign. The campaign is catalyzing and aggregating engagement from companies across all industries to gain their commitment to targets. SE4All offers companies a unique commitment framework that focuses on measurable and quantifiable metrics, as well as reports on the aggregated private sector impact. This report summarizes the current results of the We Commit campaign and demonstrates the ambition of global business to shape the transformation to a climate resilient economy by realizing the huge potential of energy efficiency. The strong engagement illustrates that private sector companies understand that the way they anticipate and respond to climate change will be key to future competitiveness. Let us use this momentum to take the global energy efficiency revolution to the next level.

Luis Gomez-Echeverri
Senior Advisor
Sustainable Energy for All

Jean-Marc Ollagnier
Group Chief Executive – Resources
Accenture

SUSTAINABLE ENERGY FOR ALL

Sustainable development is not possible without sustainable energy. Access to modern energy services is fundamental to human development and an investment in our collective future.

The Sustainable Energy for All (SE4All) initiative brings together top-level leadership from all sectors of society – governments, business and civil society. Working together, we can achieve a broad-based transformation of the world’s energy systems and build a more prosperous, healthier, cleaner and safer world for this and future generations.

In September 2011, United Nations Secretary-General Ban Ki-moon shared his vision for making SE4All a reality by 2030. He launched SE4All as a global initiative that would mobilize action from all sectors of society in support of three interlinked objectives:

I. Providing universal access to modern energy services
II. Doubling the global rate of improvement in energy efficiency
III. Doubling the share of renewable energy in the global energy mix

These three objectives, each important in its own right, reinforce each other in important ways. For example, affordable renewable energy technologies bring modern energy services to rural communities where extension of the conventional power grid is prohibitively expensive and impractical. Bolstering energy efficiency can provide substantial cost savings to governments, businesses and households, while freeing up power for other more productive uses. Achieving the three objectives together will maximize development benefits and help stabilize climate change over the long run.

SE4All has generated significant momentum since its launch. Governments from 106 countries and the European Union have partnered with SE4All to advance the three objectives at the country level. Over 50 High Impact Opportunities (HIOs) have been identified, with a wide range of stakeholders undertaking actions that will have significant potential to advance SE4All. Governments, the private sector, and multilateral institutions alike are mobilizing resources in support of the initiative’s three objectives.

4 The Sustainable Energy for All initiative also acts in support of the 2014-2024 Decade of Sustainable Energy for All as declared by the UN General Assembly
WE COMMIT: PRIVATE SECTOR ENGAGEMENT

Greater energy efficiency provides a triple rationale for action through economic benefits (increased productivity, lower costs, and job creation), improvement of people’s well-being, and advancement toward achieving global climate goals. Targeted energy efficiency measures have the potential to reduce global energy-related emissions by 1.5GT by 2020, generate US$250 billion-US$325 billion worth of savings per year, reduce local air pollution, mitigate climate change and potentially deliver 50 percent of the emission reductions required to put the world on a 2°C pathway by 2020.

As part of the Lima-Paris Action Agenda (LPAA) and based on the Rio+20 mobilization, SE4All and Accenture developed the We Commit campaign as a private sector commitment framework for energy efficiency. The campaign was launched in June 2015 with the ambition to bring 100 corporate energy efficiency commitments to COP21. It takes the work with the private sector to the next level: breaking down CO₂ targets into the proportion related to energy efficiency and with it getting a step closer to implementation. The campaign is consistent with the UN Sustainable Development Goal 7 (SDG 7) on energy.

The We Commit campaign encourages companies to actively engage in global efforts to double the rate of energy efficiency improvements and help lead the global transition to a low-carbon, climate-resilient economy. In the run-up to COP21, the campaign catalyzed and aggregated actions and initiatives from companies across all industry sectors.

- The short-term goal of We Commit was to gather energy efficiency commitments from at least 100 businesses for COP21.
- The long-term objective of We Commit is it to create a process that supports companies in implementing commitments and create business opportunities in the area of energy efficiency.

The value for business in committing

Submitting a commitment makes companies part of the SE4All network and allows for interaction. Close collaboration with the Global Energy Efficiency Accelerator Platform shares learnings on energy efficiency target setting and measures. It allows participants to build new partnerships and explore new opportunities in a wide range of sectors.

After the Paris Climate Change conference, SE4All will scrutinize the campaign results and design a follow up process. Through the SE4All Global Energy Efficiency Accelerator Platform, companies can share knowledge and best practices across different industries and progress will be reported on an annual basis.
What is a commitment?

We Commit aims for measurable and hence quantitative commitments. However, to allow companies to engage in the process, We Commit also accepts – as an initial stage – qualitative commitments to improving energy efficiency. By accepting qualitative commitments at an initial stage, We Commit can support the participating companies or industry associations in turning the qualitative commitment into a quantitative commitment – and start measuring and managing it. Lastly, We Commit also accepts commitments from partner organizations on behalf of their members. Details on the commitment categories can be found in the Annex.

<table>
<thead>
<tr>
<th>Commitment Categories</th>
<th>Requirements</th>
<th>Submitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Quantitative commitment</td>
<td>Energy use reduction within the company and/or within the supply chain</td>
<td>Individual company or representative from an industry association</td>
</tr>
<tr>
<td>2. Qualitative commitment</td>
<td>Description of an energy strategy, which must have concrete references to energy efficiency improvements</td>
<td>Individual company or representative from an industry association</td>
</tr>
<tr>
<td>3. Partner commitment</td>
<td>Signature of a Memorandum of Understanding (MoU)</td>
<td>Partner organization on behalf of its members</td>
</tr>
</tbody>
</table>

Table 1: Commitment categories

Definition: Energy Efficiency

The quantitative commitment category asks companies to submit a commitment to improve their energy efficiency at company level in the future. Energy efficiency can be defined as energy use in proportion to another business metric (e.g., metric tons of goods sold). Depending on whether the energy use is in the denominator or numerator, energy efficiency can be denoted either as energy intensity or reciprocal as energy productivity.

Energy intensity = energy use / business metric

Energy productivity = business metric / energy use

Energy use is not only limited to electricity consumption but can also include energy used from fossil fuel consumption (coal, oil, gas). Improving energy efficiency means either lower energy intensity or higher energy productivity.
WE COMMIT: OUTPUT & IMPACT

One of the objectives of the We Commit campaign was to stimulate private sector engagement before the UN Climate Change Conference in Paris. In just six months’ time, the We Commit campaign registered more than 775 commitments. Of these, about 100 commitments came from larger corporations and about 675 contributions from small- and medium-sized enterprises (SMEs).

The success of this mobilization is built on four strategic pillars:

I. Private sector flagship commitments
II. Industry association collaboration
III. UN agency collaboration
IV. National government program collaboration

Energy efficiency output

In addition to promoting and registering private sector participation, We Commit developed a process and methodology for quantifying commitments. From about 775 total commitments registered, We Commit quantified 75 absolute and relative reduction targets of energy and carbon emissions in terms of gigawatt hours (GWh). Their respective estimated energy savings for 2016-2020 add up to 62,000 GWh, which represent the city of Paris’ current energy usage for nine months.
The broader impact

The quantified commitments so far are just the tip of the iceberg. The potential of future energy efficiency gains is enormous. Looking at information and communications technology (ICT), for instance, demonstrates this: Reaping all benefits from an efficient usage of ICT could lead to an energy saving potential for the period of 2016 to 2020 of around 810,000 GWh – twice the city of Paris’ anticipated energy usage between 2016 and 2020. One could find significant saving potential in other sectors, such as utilities, housing or transportation, as the IEA points out.

Global and industry coverage

We Commit managed to spread its message across industries around the world. The commitments registered cover developing and developed markets and represent a range of industries, including CO₂ intensive sectors:

I. Commitments from multinational companies and industry leaders include companies such as Accenture, Bloomberg, BMW, DuPont, Novozymes, SKF and VELUX.

II. SE4All also collaborates with industry associations that function as enablers for achieving energy efficiency, such as the Global e-Sustainability Initiative (GeSI) or the European Copper Institute (ECI).

III. SE4All collaborates with other UN agencies, such as the UN Industrial Development Organization (UNIDO) or UNFCCC’s NAZCA platform.

IV. To engage the private sector, SE4All also supports national government programs.

SE4All collected private sector commitments from all continents, totaling 33 countries, including Australia, Brazil, China, the European Union, India, Mexico, the Philippines, Russia, South Africa, and the United States.

Figure 2: We Commit commitment coverage, status December 2015
Bloomberg saves US$2.2 million annually with a new LEED Gold data center

By the end of fiscal 2020, Bloomberg plans to improve its energy efficiency per square meter of office space by 30 percent against its 2007 baseline.

Bloomberg is aggressively pursuing creative solutions to save energy at data centers – including IT equipment upgrades, equipment organization and air containment in hot and cold aisles, utilizing free cooling when outside conditions allow, and collecting data to determine the success of these efforts. In Q1 of 2015, Bloomberg’s new data center attained Leadership in Energy and Environmental Design (LEED) Gold in the new construction data center beta program. It is only the second data center to be certified under LEED v4. When fully loaded with IT equipment, it is expected to save more than 28 million kWh annually, reducing utility expenses by US$2.2 million annually.

Bloomberg’s further commitments:

- Source 35 percent of total global energy requirements from renewable sources by 2020
- Generate a 20 percent or greater internal rate of return (IRR) on demand reduction strategies, infrastructure investments and renewable energy projects
- Seek opportunities with existing and new NGO partners to expand support of energy access in disadvantaged communities across the globe

Accenture plans to improve energy efficiency by 30% until 2020

By the end of fiscal 2020, Accenture plans to improve its energy efficiency per square meter of office space by 30 percent against its 2007 baseline.

Accenture’s energy management programs comprise people, process and technology solutions to advance the goal of reducing carbon impact. Local environment leads implement programs to reduce energy consumption and achieve annual improvement targets in terms of kWh per meter squared of office space.

Since the outset of these programs in fiscal 2007, the collective energy efficiency of Accenture’s offices around the globe has improved more than 26 percent. These improvements add up over time, helping cumulatively save an estimated 530,000 megawatt hours of electricity and more than 330,000 metric tons of CO₂.

For perspective, approximately the same emissions would be avoided if 70,000 cars were taken off the road in North America for one year. These efficiency gains also saved more than US$65 million in energy spend over that same time period.
Novozymes is the world leader in biological solutions. Together with customers, partners and the global community, Novozymes improves industrial performance while preserving the planet’s resources and helping to build better lives.

Novozymes sets a new goal to save 100 million tons of CO₂ per year in 2020.

Each year Novozymes reports on the estimated CO₂ emissions reduced by customers’ application of Novozymes products in their products or processes. In 2014, customers reduced their CO₂ emissions by an estimated 60 million tons through the application of Novozymes’ products, equivalent to taking 25 million cars off the road. With growing constraints on global resources, Novozymes is also dedicated to optimizing its own operations year on year, so as to reduce the consumption of natural resources and mitigate the negative environmental impact of its production processes. For example, Novozymes commits to improving the energy efficiency of its operations per DKK of gross profit by 30 percent (against a 2014 baseline). Novozymes will adopt 2014 as the new baseline year for all operational eco-efficiency targets. By measuring performance against a more recent baseline, it can ensure that its data are more accurate, relevant and transparent for stakeholders. In 2014, Novozymes’ energy efficiency improved by 43 percent compared with 2005, surpassing its 42 percent target. This improvement was driven by continuous process optimization and implementing 56 energy-saving projects at global production sites, which are also helping to reduce energy costs.

SKF is a leading bearing and seals manufacturing company founded in Gothenburg, Sweden in 1907. The company manufactures and supplies bearings, seals, lubrication and lubrication systems, maintenance products, mechatronics products, power transmission products, condition monitoring systems, and related services globally.

SKF enables growth with less environmental impact

SKF commits to reduce its absolute energy use by 5 percent by 2016, compared to 2006. SKF has a central position in the transition of society’s energy systems. In fact, bearing technology is found in almost every energy generating and energy using machine on Earth. For a long time, SKF has contributed to solving industrial problems through innovative solutions. Enabling economic development while reducing climate impact is one of the most critical challenges we face today. During 2006-2014, when revenues increased by more than 30 percent, SKF managed to cut absolute energy use in operations by 17 percent—through systematic work by committed people. This was achieved by a combined focus on reducing energy demand in production lines and improving the efficiency of in-house central energy systems.

Moreover, SKF supports suppliers, logistics partners and customers in reducing their emissions. There are now more than 50 specific solutions with verified environmental benefits in the SKF BeyondZero portfolio—helping to enable growth of renewable energy and significant increase of energy efficiency in industrial applications. For example, the SKF Nautilus bearing unit in wind turbines cut costs by eliminating the need for a main shaft. This substantially reduced the turbine’s dimensions and weight while improving its energy efficiency and reliability.
THE WAY AHEAD

We Commit looks at COP21 as a significant campaign milestone but continues to plan for the future. Companies are still welcome to join the campaign and make energy efficiency commitments.

Call for action: Join now!

Companies that have not yet committed can still do so by filling out a simple submission form online. Please visit: www.se4all.org/tracking-progress/private-sector/commitment-form.

Participation in the campaign provides companies with visibility for their work and drives global recognition at various international events. By making a commitment, companies become part of the SE4All network and can join the Global Energy Efficiency Accelerator for multi-stakeholder dialogue with policy makers and industry peers. This can help participants build new opportunities around industrial energy, district energy, buildings, appliances, lighting and transportation.

Learnings from the We Commit campaign

Engagement with the various stakeholders, from private sector corporations up to national and international public officials, revealed some initial learnings. Considering these in upcoming phases of the campaign and other future initiatives will be beneficial:

• Although many companies have a carbon reduction goal, many have not translated this into a transparent energy reduction strategy. Setting clear energy targets is indeed the next step to operationalize carbon targets.

• When committing to energy efficiency, some companies encounter operational or structural challenges in clearly quantifying these. They must start with setting a qualitative target before being able to set a quantitative one.

• Doubling the global energy efficiency rate until 2030 is only feasible if individual commitments are accompanied by further cross-industry enablement efforts. Cross-industry multi-stakeholder collaboration must be fostered to enable efficiency.

• If multinational corporations collaborate on target setting for energy efficiency and the respective implementation, it can incur massive energy savings.

• In less developed countries, business might require assistance in financing, in technical implementation, and for continuous operation.
Outlook: What comes next?

After the Paris Climate Change conference, SE4All will scrutinize the campaign results and design a follow up process. Selected commitments could also be featured in other initiatives, for instance NAZCA or the We Mean Business Association.

SE4All’s Global Energy Efficiency Accelerator Platform is open to commitment makers as a vehicle for multi-stakeholder dialogue that aims to bring a new narrative into the energy efficiency debate: one of opportunity, rather than risk.

SE4All is collaborating with the 1 Gigaton Coalition on solutions to challenges in measuring and reporting data, as well as creating a standardized methodology to attribute emissions saved through energy efficiency activities. The 1 Gigaton Coalition is a voluntary international framework which was initiated and supported by the Government of Norway and is coordinated by the UN Environment Programme. Its aim is to create a solution to the fact that emissions savings from renewable energy and energy efficiency initiatives are under-reported or not reported at all.
ANNEX

I. Commitment categories

1. Quantitative commitment

A quantitative commitment can be submitted by an individual company or a representative from an industry association. Companies submitting a quantitative commitment on energy efficiency have to provide the following data:

- Absolute energy use in base year and current reporting period.
- Absolute value of the business metric in base year and current reporting period.
- Percentage or absolute improvement of energy efficiency in target year compared to base year.
- Data on energy use and business metric must be from the same base year and the same current reporting period.
- Base year must be different from the current reporting period and lie in the past (i.e., 2014 or earlier).
- Target year must be different from current reporting period and lie in the future (i.e., 2016 or beyond).

Energy savings (i.e., the total amount of energy use reduction) will be calculated and aggregated for the period of 2016 until 2020.

If the full set of data is not available, We Commit also accepts quantitative commitments that provide a limited set of data on energy efficiency scopes.
For instance, companies could aim to improve energy efficiency on the product level, in the supply chain or in other areas outside the business, while describing their top activities to realize their commitment. The commitment must include a future target year in which the quantitative goal will be realized.

2. Qualitative commitment

A qualitative commitment on improving energy efficiency systematically in the future can be submitted by an individual company or a sector representative on behalf of its member companies. Qualitative commitments should provide the following data:

I. Description of a strategy or roadmap that
 a. Targets energy efficiency of operations
 b. Is future oriented
 c. Includes measures undertaken
 d. A transparent timeframe

II. Information on measures (optional):
 a. References to the energy efficiency outcome
 b. Description of an existing or planned energy management system
 c. Description of investments in energy efficiency
 d. Description of progress tracking metrics and processes

3. Partner commitment

This category includes all commitments submitted by a SE4All partner organization. Requirements and utilization of partner commitments are agreed individually and formalized by signing a Memorandum of Understanding (MoU).

II. Methodology to quantify private sector commitments

The purpose of the calculation is to demonstrate the impact that SE4All’s We Commit campaign could have if companies meet their submitted energy efficiency targets. The defined goal is to aggregate the potential impact of all commitments as a total amount of GWh saved between 2016 and 2020.

Data requirements

Companies submitting a quantitative commitment have to provide the data, as described in the Annex “I. Commitment categories.”
Assumptions and calculations

A scenario calculation approach based on extrapolation of historic data is applied. Following established Carbon Disclosure Methodologies (CDM), projected energy savings will be calculated by comparing a to-be scenario with a business-as-usual (BAU) scenario, which serves as a baseline. The Marrakech Accord defines the baseline for a CDM project activity as “the scenario that reasonably represents the anthropogenic emissions by sources of greenhouse gases that would occur in the absence of the proposed project activity.” The individual calculation steps are based on certain assumptions:

Assumptions

I. A company that submits an absolute energy reduction commitment reduces linearly its energy use until the target value is met in the target year.

II. A company that submits a relative reduction commitment increases linearly its energy efficiency until the target value is met in the target year.

III. If a company already met its relative or absolute energy reduction target in the current reporting period, no further savings will be calculated for the remaining years of the observation period 2016-2020.

5 UNEP Risø Center, Baseline Methodologies For Clean Development Mechanism Projects (Denmark, 2005), 14
Calculation of the to-be scenario

Assuming that a company meets its commitment, the objective of the to-be scenario is to calculate for each year between 2016 and 2020 the values for all respective metrics of the company, i.e. its energy use, its business metric and its energy efficiency (measured by either energy intensity or energy productivity). The respective calculation methodology depends on whether the company submitted an absolute or relative reduction commitment (Assumption I. or II., respectively).

- In case of an absolute reduction commitment:
 - The company will reduce its energy use linearly (Assumption I.).
 - The yearly reduction of the energy use can be calculated by dividing the total reduction in energy use by the number of years between the current reporting period and the target year.

- In case of a relative reduction commitment,
 - The company will improve its energy efficiency linearly (Assumption II.).
 - The yearly improvement of the energy efficiency can be calculated by dividing the total energy efficiency improvement by the number of years between the current reporting period and the target year.
 - The respective compound annual growth rate (CAGR) for the business metric is calculated based on its value of the base year and the current reporting period. This CAGR is then used to extrapolate the business metric until the target year.6
 - Having for each year the values on energy efficiency improvement and on the business metric, one can calculate the energy usages for each year.

Calculation of the BAU scenario

The BAU scenario assumes that no energy efficiency improvements are realized in the future. The same calculation steps apply as for the to-be scenario in case of a relative reduction commitment, with the only difference of keeping the energy efficiency constant.

Calculation of potential absolute energy savings

Potential absolute energy savings are calculated by aggregating annual differences between the to-be and BAU scenarios for the observation period 2016-2020

6 The business metric (e.g., tons of sales volume) will mostly increase over time as most companies tend to grow by output. Since most companies push energy efficiency as a way to maintain output growth while using less energy per output unit, the business metric was chosen as the extrapolated independent variable and energy use the dependent variable.
Exceptions

The following conditional adjustments are applied to the methodology above to consider deviating data situations in exceptional cases:

Data on carbon emissions instead of energy usage

If the relative or absolute reduction target refers to carbon emissions instead of energy use, emissions will be transformed into energy use by a company-specific emission factor. The latter represents the energy use impact of emission reduction between a year Y and current reporting period (i.e., how many GWh are saved on average in the given timeframe if the given company reduces its carbon emissions by one metric ton). Year Y lies X years in the past while X represents the number of years between the current reporting period and target year. If the company’s emissions tend to be very volatile, the emission factor is normalized by using the ratio between average yearly change in carbon emissions and average yearly change in energy use in the X-year timeframe.

Missing data on the business metric

If an absolute reduction commitment is submitted without business metric data, absolute potential savings will be derived by comparing yearly energy usages from the to-be scenario with respective prior-year results. Thus, only actual targeted savings compared against the current period baseline will be considered.

Limitations

The assumptions and calculation imply the following limitations:

- Companies may not meet their energy efficiency targets and consequently energy savings may not be realized.
- All extrapolations and projections are based on average historic trends and may deviate from actual developments so that potential savings may in reality be lower or higher than predicted.
- Given the assumptions above, energy use is the dependent variable and the business metric is the independent variable. Changing the roles of the variables would result in a more growth-oriented company approach.
- Usually, energy efficiency does not improve linearly over time. Hence, actual energy efficiency improvements may be higher or lower than estimated here.

Given these limitations, it is important to note that the objective is not to calculate accurate energy use changes but rather to illustrate potential changes in energy use if companies meet their submitted commitments.
III. We Commit: Private Sector Commitment Makers

Private sector flagship commitments

Accenture
ArcelorMittal
Bank of America
BASF
Bayer
Bloomberg
BMW
Danfoss
DuPont
Eaton Corporation
Embraco
Energias de Portugal
Engie

FEMSA
Henkel
Infosys
Ingersoll Rand
Johnson Controls
KPMG International
Novozymes
Philips
Siemens
Skanska
SKF
Telefonica
Unilever

Industry association collaboration

ASE – Alliance to Save Energy
ECI – European Copper Industry
ESEE – Hellenic Confederation of Commerce and Entrepreneurship
GeSI – Global e-Sustainability Initiative

UN agency collaboration

UNFCCC – UN Framework Convention on Climate Change, focusing on NAZCA
UNEP – UN Environmental Programme
UNIDO – UN Industrial Development Organization

7 Representing 18 copper processing companies
8 Representing 600 small- and medium-sized enterprises
9 Representing 32 member companies
10 Considering 42 commitments submitted to NAZCA; more information via: http://climateaction.unfccc.int
IV. SE4All: Partners and Supporters

SE4All Partners
- ADB – Asian Development Bank
- African Development Bank
- Alliance for Rural Electrification
- BNEF – Bloomberg New Energy Finance
- Energy for All
- FAO – Food and Agricultural Organization of the UN
- IIASA – International Institute for Applied Systems Analysis
- Inter-American Development Bank
- International Electrotechnical Commission
- IRENA – International Renewable Energy Agency
- Masdar
- Norad – Norwegian Agency for Development Cooperation
- Norwegian Ministry of Foreign Affairs
- OFID – OPEC Fund for International Development
- Practical Action
- REEEP
- REN21
- SNV – Netherlands Development Organisation
- Statoil
- UN-Energy
- UN Development Program
- UN Environmental Programme
- UN Foundation
- UN Global Compact
- UN Industrial Development Organization
- World Bank
- Zayed Future Energy Prize

SE4All Supporters
- AHEAD Energy
- Energy Access Practitioner Network
- Global Alliance for Clean Cookstoves
- GBEP – Global Bioenergy Partnership
- Global Village Energy Partnership
- Lighting Africa
- UN High Commissioner for Refugees
CONTRIBUTORS

Luis Gomez-Echeverri,
Senior Advisor and Lead of the
Global Energy Efficiency Accelerator
Platform, SE4All

Thibaud Voita,
Programme Officer on Energy
Efficiency, SE4All

Sujeesh Krishnan,
Advisor on Energy Efficiency, SE4All

Bruno Berthon,
Senior Project Advisor, Accenture

Fabienne Babinsky,
Project Director, Accenture

Paul Endres,
Project Consultant, Accenture

Jens Plambeck,
Project Advisor, Accenture

ABOUT SUSTAINABLE ENERGY FOR ALL

Launched in September 2011 by UN Secretary-General Ban Ki-moon, the Sustainable Energy for All initiative has three main objectives by 2030: to ensure universal access to modern energy services, to double the global rate of improvement in energy efficiency, and to double the share of renewable energy in the global energy mix. The SE4All initiative also acts in support of the 2014-2024 Decade of Sustainable Energy for All as declared by the UN General Assembly. Visit us at www.se4all.org.

ABOUT ACCENTURE

Accenture is a leading global professional services company, providing a broad range of services and solutions in strategy, consulting, digital, technology and operations. Combining unmatched experience and specialized skills across more than 40 industries and all business functions—underpinned by the world’s largest delivery network—Accenture works at the intersection of business and technology to help clients improve their performance and create sustainable value for their stakeholders. With more than 358,000 people serving clients in more than 120 countries, Accenture drives innovation to improve the way the world works and lives. Visit us at www.accenture.com.