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As artificial intelligence has grown increasingly sophisticated, 
it’s become a crucial element of many products and services. 
Today’s AI systems can interpret spoken commands, 
recognize objects and gestures, navigate, plan, and make 
decisions. These successes are driving demand for even 
more powerful AI-driven experiences: smart products 
and environments that are autonomous, interact naturally 
with users, and adapt to changing conditions seamlessly. 
But keeping up with these increasing expectations will 
require new thinking about how AI systems are designed.

One promising approach is to turn to the brain for 
inspiration. The human brain packs an amazing capacity 
for learning and computation into a compact package. 
It consumes a fraction of the energy required by the 
processors that power today’s AI systems, and needs 
only a few examples to learn new patterns. 

It’s responsive, having evolved to quickly identify and 
avoid lunging predators. It has many properties we need 
in the next wave of smart products that provide efficient, 
responsive, and adaptive intelligence at the edge.

This is where neuromorphic computing comes in. 
Neuromorphic computing is an emerging approach to 
hardware-accelerated AI. Inspired by the properties 
of biological brains, neuromorphic architectures 
are radically different from those used in traditional 
processors. Instead, they emulate neural systems. 

Neuromorphic technologies will help  solve business 
challenges that require AI at the edge, such as 
responsive voice control for vehicles, full-body  
gesture recognition for touchless interfaces, and  
on-board intelligence for assistive robotics.
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Powering increasingly 
sophisticated smart products

There are several reasons for this trend toward “smart everything.” 
Smart products offer natural interaction: many products, from 
home entertainment to automotive interiors to industrial equipment, 
can be controlled by voice and gesture rather than physical buttons 
or control panels. Today’s smart products let people focus on other 
activities by operating with increased autonomy, like robot vacuums 
that clean the house or the aisles of the grocery store. 

The most advanced smart products also offer continuous 
optimization. Through enhanced data collection and analysis, they 
can improve their performance over time to better serve the needs of 
a particular customer or organization. Whether it’s a smart thermostat 
that learns optimal room temperatures for different situations or a 
robot that develops a new, more efficient path through a warehouse, 

optimization is a powerful capability. Optimization also offers a 
pathway to provide new services via existing smart products. As 
companies learn how their products are being used, they can 
identify opportunities for expanded services and features, and  
roll those services out to expand the capabilities of the product.

Smart products are already disrupting and transforming industries, with growing demand 
from both consumers and businesses. The smart home market alone, just one piece of the smart 
product spectrum, is projected to be worth $135B by 2035.1 

Continuous  
optimization

Key benefits of smart products

Natural  
interaction
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Today’s smart products have demonstrated the value of infusing AI into 
both consumer and industrial devices. But we’re running up against the 
limits of traditional computing: the idea of delivering AI everywhere is 
limited by the hardware that powers it. Tasks like recognizing real-world 
gestures or understanding speech require powerful processors that  
quickly drain a device’s batteries.

That’s why many of the smart products we use today actually rely on off-
site computing power to run their AI. But this approach means that a 
product needs a reliable network connection to act smart; it also means 
introducing delays while the system sends data off-site and waits to find 
out how it should respond. For some applications this isn’t an issue, and 
the best modern networks may reduce the latency going forward; but for 
applications that demand truly real-time performance, any delay may be 
a dealbreaker. Sending raw data outside the device creates privacy and 
cybersecurity concerns as well.
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Computational variety landscape

GPU

CPU

FPGA

QC

NC

ASIC

As companies look to a wider range of smart applications, these 
challenges highlight the need for more intelligent computing 
on-board smart products and devices, at the “edge” of networks. 
Achieving the full range of capabilities that both businesses 
and consumers want will require the power of cloud capabilities 
coupled with intelligence at the edge.

To enable “intelligence everywhere,” businesses are looking to 
new computing paradigms. The next era of computing will rely 
on what Accenture has described as computational variety.2 
Computational variety means matching the needs of business 
applications to specialized computing hardware from a growing 
set of options. Neuromorphic technologies will be among those 
options, along with quantum computers, field-programmable 
gate arrays (FPGAs), and application-specific integrated circuits 
(ASICs). All of these offer dramatic performance benefits over 
CPUs and GPUs for particular applications. When the needs of 
the application include low-power, low-latency, or on-device 
adaptation, that’s where neuromorphic solutions may be the 
best match.At the edge
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https://www.accenture.com/us-en/insights/technology/computational-variety?src=soms
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Applied today:
Responsive voice control for smart vehicles

Driving intelligence at the edge with Neuromorphic Computing

Owners of smart vehicles have high expectations: they want functions like 
self-parking and summoning features, but they also want natural, seamless 
interfaces to control their interactions with the car. Voice-based controls, 
along with implicit intent recognition, can provide greater personalization 
and smoother interactions. They also help unclutter the car’s dashboards 
and displays.

Why don’t today’s vehicles make wider use of this approach? Because it 
requires intensive computation. Conventional AI hardware is too power-
hungry to run onboard continuously without draining the battery, and  
using only cloud-based AI and wake words creates too much lag, leading  
to a poor experience.

Neuromorphic technologies make efficient onboard AI possible. In a recent 
collaboration with an automotive client, we demonstrated that spiking 
neural networks running on a neuromorphic processor can recognize 
simple voice commands up to 0.2 seconds faster than a commonly used 
embedded GPU accelerator, while using up to a thousand times less  
power. This brings truly intelligent, low latency interactions into play, at  
the edge, even within the power-limited constraints of a parked vehicle.

Energy 
efficiency

Low 
latency

CASE STUDIES
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These properties of biological brains are at the core of brain-like 
computing, which provides:

Energy efficiency 
Neuromorphic systems are several orders of magnitude 
more energy efficient than general purpose computing 
architectures.

Low latency 
Neuromorphic systems excel at processing continuous 
streams of data and deploying neuromorphic processors  
at the edge reduces the delay to analysis.

Adaptive processing 
Neuromorphic system architectures let devices adapt  
to changes in context.

Rapid learning 
Recent advances in training neuromorphic systems  
have enabled rapid learning from very little data—
near-biological capabilities which are beyond most 
conventional AI systems.

AI powered by brain-like computing architectures

Scientific understanding of how the brain works is not yet 
complete, but it is mature enough to uncover many core 
principles of neural computation. Researchers and engineers 
have worked together to develop algorithms and processors  
that replicate some of those core principles and mechanisms.

What are they trying to emulate? An average human brain 
contains 80 to 100 billion neurons that are each highly efficient. 
Activity in the whole brain is much sparser than traditional 
computer architectures. Complex sequences of spikes in  
organic nerve fibers are nothing like the 64-bit silicon data  
buses we see in general-purpose processors. In the brain, each 
neuron works asynchronously to provide massive parallelism—
many different processes all happen at once—and to adapt 
quickly to rapid changes in the environment.

In the past several years, neuromorphic devices with these 
properties have become a reality, accelerating practical  
solutions to the increasing demand for smart products.
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Neuromorphic 
Computing 101
The term Neuromorphic Computing is used  
to describe a variety of computational 
technologies inspired by the brain. We’re focused  
on systems using spiking neural networks, 
which we see as the most application-ready 
approaches in neuromorphic computing today.

How do spiking neurons work?

A neuron receives input signals from sensors and other 
neurons over time. The neuron adds the inputs to its 
membrane potential (V) and subtracts a fraction of the value 
from the previous timestep (leak). If the integrated input 
values are large enough, V exceeds the threshold, causing 
the neuron to fire an output spike and reset V back to zero.
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Spiking neural networks are built from two components: the 
neuron model and the synapse model. The neuron model 
emulates the spiking activity of a biological neuron using a 
digital circuit. That means the neuron either fires a spike, 
or it’s silent. In most computing systems, a large portion of 
energy is used moving information between processing  
cores or in and out of memory. But in a spiking neuron 
model, when a neuron is not spiking, it does not move any 
information and uses very little energy. SNNs can include 
millions of neurons, each working independently  
to aggregate input values and fire output spikes.

NUTS AND BOLTS
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How do spiking networks learn?

Spike-timing dependent plasticity (STDP) enables SNNs to learn. 
Under STDP, the strength of each synapse is adjusted based 
on the precise time each connected neuron fires a spike. STDP 
works by learning associations in the input data. When the 
sending neuron spikes before the receiving neuron, the synapse 
is strengthened. If the two neurons spike in reverse order, the 
synapse is weakened. Variations on STDP can support many 
types of machine learning, including supervised learning, 
reinforcement learning, and other AI algorithms.

This approach is very different from the artificial neural 
networks (ANNs) powering most AI systems today. In 
those systems, nodes map input values to outputs with 
simple activation functions. ANNs don’t process changing 
input signals continuously. Instead, input values are sent 
to the network in batches and the activation of the entire 
network is re-computed for each set of inputs in a batch. 
That can require trillions of operations per second, which 
is why current AI models run on power-hungry GPUs.

In spiking neural networks, connecting neurons is the job 
of the synapse model. The synapse model takes output 
spikes from each neuron and routes them to the inputs of 
other neurons. The synapse scales the signal by a factor 
called synaptic strength. The SNN learns from experience 
and adapts to an environment by adjusting synaptic 
strengths. Again, this is very different from ANNs which use 
a method called backpropagation to optimize connection 
strengths for a given problem.

Driving intelligence at the edge with Neuromorphic Computing
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Applied tomorrow:
Adaptive control for semi-autonomous robots
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Many promising robotics applications need precise motor control before 
they’re ready for practical use. Precision agriculture drones need to be able 
to target specific plants. Medical telepresence robots must be capable of 
navigating safely around patients and other healthcare workers.

Current approaches work well for highly repetitive movements and 
controlled circumstances. But designing a robot with precise motor control 
that can also adapt to work in a variety of situations and contexts has so far 
proven out of reach.

Recent developments show promise in this area. Adaptive control 
algorithms inspired by the motor control structures of biological brains 
have shown an impressive ability to move precisely and compensate for a 
variety of unexpected conditions. These neuromorphic algorithms can also 
rapidly adapt to new applications. We’re working with researchers from the 
Open University of Israel and ALYN Hospital to apply these algorithms to 
wheelchair-mounted assistive robot arms. These robots must be extremely 
precise and also adaptable to a range of daily tasks such as feeding and 
opening doors. The high cost of existing systems is a significant barrier;  
we expect the brain-inspired neuromorphic solution to allow a much  
lower cost robot to support the same range of tasks.

Energy 
efficiency

Low 
latency

Adaptive 
processing
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Recent advances put neuromorphic 
computing within reach
They can be simulated using CPUs, but this doesn’t achieve the low 
power use and low latency benefits of true neuromorphic computing. 
Realizing the true potential of neuromorphic computing requires new 
computing architectures. 

In the past decade, research and development on neuromorphic 
processors, sensors, and algorithms has rapidly advanced with 
support from the DARPA SyNAPSE project and the EU Human 
Brain Project. IBM developed the TrueNorth processor and model 
architecture in 2014, demonstrating that neuromorphic chips could 
reach a massive scale (more than 1 billion neurons) and that they could 
efficiently perform state-of-the-art deep learning tasks3. A consortium 
of researchers in the EU developed two neuromorphic platforms 
starting in 2013; these helped establish that neuromorphic computing 
could be made practical with inexpensive ARM cores and could push 
the boundaries of electrical engineering with massive silicon wafer 
analog circuits.

Intel announced its own neuromorphic architecture in 2017, called 
Loihi. The new chip has been made available to a growing community 
of researchers, including Accenture Labs. Current Loihi devices are 
still intended for research rather than immediate commercialization, 
but academic and industrial scientists around the world are already 
applying them to many real-world problems. Benchmarks have 
shown that the chip uses 40x less energy than a standard GPU-based 
approach for real-time speech processing, for example.4

Sensor startups Prophesee and Inivation have also made significant 
advances in developing neuromorphic architectures specifically for 
computer vision. Event-based cameras developed by sensor startups 
Prophesee and Inivation are both massively parallel, asynchronous, 
spiking sensors that provide drastically lower energy consumption, 
lower latency, and higher dynamic range than standard image 
sensing chips.

Until recently, spiking neural networks were used in neuroscience but little else. 
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Embracing change: 
Flexible gesture recognition for touchless interaction

It’s now common to interact with systems through touch interfaces, like retail 
payment touchscreens and interactive displays. But high-touch surfaces like these 
have their limitations, and when they’re at high use in public spaces, they can also 
spread germs. Enabling more flexible and touchless gesture-based interaction can 
protect health as well as creating richer, more natural customer experiences.

Shoppers could interact with smart retail kiosks to learn about products with 
simple gestures. Movie-goers could engage with dynamic movie posters with 
a wave and a nod. There are many possibilities; but recognizing gestures in the 
real world is difficult. Natural gestures vary tremendously between people, and 
even for a given person, gestures can shift quickly during interactions to reduce 
effort and improve communication. Humans adapt to these differences easily, 
but current AI hardware can’t. Enter neuromorphic computing.

By pairing a neuromorphic processor with a spiking image sensor, Accenture 
Labs has developed AI models that support real-time natural gesture 
recognition. Unlike current AI solutions that would require large amounts of 
training data to recognize just a few gestures, these models can learn from new 
input data in real time. The system can quickly learn multiple different gestures 
from one person, and it can easily recognize different people’s gestures as well.

Supporting this level of natural interaction will not only enable safer interactions 
with technology, it will expand the possibilities for gesture-driven experiences.

Energy 
efficiency

Low 
latency

Rapid  
learning 
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The event-based sensor (right) 
records only when a scene 
changes. This generates 
less data, improving energy 
efficiency and reducing latency 
in addition to generating more 
contrast. In the top images, 
pedestrians passing in front of 
the sensor are clear even with 
minimal ambient light. In the 
bottom images captured from a 
moving vehicle, the outlines of 
all relevant objects are distinctly 
visible. (Images courtesy of 
Prophesee) 
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A maturing technology

First, Spiking Neural Networks require new approaches to machine 
learning. Existing algorithms for supervised learning aren’t directly 
compatible with the mathematically discontinuous nature of spikes. 
Several research groups have recently developed algorithms  
to modify the feedback sent to neurons, helping to address  
this challenge; in the process, they’ve achieved state-of-the-art 
accuracy with SNNs on speech and gesture recognition tasks,  
which are promising steps forward for broader applicability. Now  
the engineering community must build on this effort with testing  
and maintenance of these algorithms to expand their suitability  
for practical use.

As the hardware and algorithmic foundations of neuromorphic 
computing are coming together to support practical applications 
of the technology, the next step will be to enable its adoption at 
scale. We want the tools for developing, debugging, and deploying 
neuromorphic solutions to be as robust and user-friendly as the  
tools and APIs used for traditional AI hardware.

We’re beginning to see progress in this space: Intel has built a robust 
set of tools around the Loihi processor, as well as an active user 
community. Another success in this area has come from Applied 
Brain Research, a Canadian startup developing a neuromorphic 
platform that unifies development and deployment across several 
hardware accelerators. Nevertheless, established machine learning 
platforms enjoy a considerable lead in this area—for now.

We’ve seen a lot of progress in scaling and industrialization of neuromorphic architectures.  
Still, building and deploying complete neuromorphic solutions will require overcoming some 
additional challenges.
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Looking forward

Neuromorphic processors and sensors will fill an important niche in the 
AI landscape: providing real-time intelligence with continuous, onboard 
learning on a tight energy budget. Already-established use cases 
include adaptive robotics and advanced features for smart vehicles, but 
applications will expand considerably as consumers and businesses 
become more comfortable with machines that learn on the job.

We can also see neuromorphic computing having an impact in cloud 
and high-performance computing on a longer time horizon. Already, 
state-of-the-art AI models in the field of natural language processing 
require so much data and computing power to train that they are out of 
reach for all but the largest tech firms, and they use staggering amounts 
of energy. A recent project that trained a robotic hand to manipulate a 
Rubik’s Cube was estimated to require as much as 2.8 GWh of electricity 
—enough to power hundreds of homes for a year.5 While current 
neuromorphic devices aren’t yet able to compete with the scale of  
these massive systems, the potential to reduce those power budgets 
will motivate further research and development.

Finally, the growing ecosystem of academic, industry, and 
government participants in neuromorphic computing is a strong 
positive signal. At Accenture Labs, we’re collaborating with leading 
universities and enterprise partners to envision, invent, and evaluate 
applications for neuromorphic technologies.

Neuromorphic computing can provide significant business benefits as demand for AI at the edge 
continues to grow. 

Every organization needs to shape its 
computational variety strategy to meet 
growing demands from consumers—and 
to stay ahead of increasing competition. 
Now, with emerging neuromorphic 
hardware and maturing platforms, 
it’s time to start experimenting with 
neuromorphic computing, starting 
with applications that require efficient, 
responsive, and adaptive AI at the edge.
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