
struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
struct group_info *groups_alloc(int gidsetsize){
 struct group_info *group_info;
 int nblocks;
 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidsetsize;

 group_info->nblocks = nblocks;

 atomic_set(&group_info->usage, 1);

 if (gidsetsize <= NGROUPS_SMALL)

 group_info

struct group_info init_groups = { .usage = ATOMIC_INIT(2) };

struct group_info *groups_alloc(int gidsetsize){

 struct group_info *group_info;

 int nblocks;

 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidset

struct group_info init_groups = { .usage = ATOMIC_INIT(2) };

struct group_info *groups_alloc(int gidsetsize){

 struct group_info *group_info;

 int nblocks;

 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidsetsize;

 group_info->nblocks = nblocks;

 atomic_set(&group_info->usage, 1);

 if (gidset

struct group_info init_groups = { .usage = ATOMIC_INIT(2) };

struct group_info *groups_alloc(int gidsetsize){

 struct group_info *group_info;

 int nblocks;

 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidsetsize;

 group_info->nblocks = nblocks;

 atomic_set(&group_info->usage, 1);

 if (gidset

Accenture and M6

Monetizing Big Data

struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
struct group_info *groups_alloc(int gidsetsize){
 struct group_info *group_info;
 int nblocks;
 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidsetsize;

 group_info->nblocks = nblocks;

 atomic_set(&group_info->usage, 1);

 if (gidsetsize <= NGROUPS_SMALL)

 group_info

struct group_info init_groups = { .usage = ATOMIC_INIT(2) };

struct group_info *groups_alloc(int gidsetsize){

 struct group_info *group_info;

 int nblocks;

 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidset

struct group_info init_groups = { .usage = ATOMIC_INIT(2) };

struct group_info *groups_alloc(int gidsetsize){

 struct group_info *group_info;

 int nblocks;

 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidsetsize;

 group_info->nblocks = nblocks;

 atomic_set(&group_info->usage, 1);

 if (gidset

struct group_info init_groups = { .usage = ATOMIC_INIT(2) };

struct group_info *groups_alloc(int gidsetsize){

 struct group_info *group_info;

 int nblocks;

 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidsetsize;

 group_info->nblocks = nblocks;

 atomic_set(&group_info->usage, 1);

 if (gidset

M6 is a leading French media business
with annual revenues of €1.6 billion.
It is part of RTL Group and is ultimately
owned by the Bertelsmann Group.
It offers traditional and over-the-top
TV content and has a growing digital
portfolio of websites, e-commerce
services and YouTube channels.
The M6 network now ranks in the top
15 of French web platforms in terms
of audience share and reaches almost
a third of all French web users.1

2 | Accenture and M6 | Monetizing Big Data

1 Médiametrie / NetRatings September 2015, audience coverage of 28%

Opportunity
As an increasingly digital business, M6 recognized
that it needed to make greater use of the large
amount of data at its disposal.
M6 wanted to act decisively, both to keep pace with competitors who
are upping their big data game, and to establish true differentiation in
the market. M6 therefore came to Accenture with a simple question:
how to achieve higher revenues from big data? Accenture and M6
embarked on an 18-month project to develop an answer that spanned
M6’s critical activities, from strategy to implementation and ongoing
execution.

Solution
Accenture identified three distinct phases of
activity that would be required to achieve M6’s
desired outcomes.
The first phase involved creating a roadmap and defining the
capabilities necessary for M6 to effectively monetize big data.
Accenture created use cases for different data scenarios and was
able to identify the precise value levers that would enable M6 to
make optimal use of big data and analytics.

A key focus was advertising. Using big data platforms and advanced
analytics features (machine learning algorithms + dashboards) would
allow M6 to build a segmentation of their audience based on behavior
across websites, enriched with anonymized offline data. This would
improve relevance and personalization through targeting. It would also
enable M6 to manage advertising yield more effectively and enhance
its data forecasting capabilities to make more compelling offers to
current and future advertisers.

3 | Accenture and M6 | Monetizing Big Data

A key focus was advertising.
Using big data platforms
and advanced analytics
features (machine learning
algorithms + dashboards)
would allow M6 to
build a segmentation of
their audience based on
behavior across websites,
enriched with anonymized
offline data.

Detailed analysis enabled Accenture to map the capabilities required
to support each of these key areas and define the technological and
organizational architecture and operating models necessary to deliver
M6’s targeted business outcomes. With those agreed, Accenture was
able to move into the next phase: delivering the Advanced Analytics
for Advertising Solution for data monetization.

To allow M6 to exploit the greatest possible value from its data, it was
essential that the new analytics platform consolidate the disparate data
sources and assets that were previously the sole preserve of individual
business units. In storing data from its DMP, ad servers, Order Manage-
ment System, CRMs, and more, in this ‘data lake’, M6 would be laying
the foundations for an extremely powerful set of analytical capabilities
and creating new areas to explore.

Accenture used a ‘hybrid’ approach to design M6’s new organizational
model. The model retains the agility and business-driven advantages
of a digital workforce which is close to M6’s brands, while ensuring
synergies, economy of scale and cross-pollination across them.

To allow M6 to exploit
the greatest possible
value from its data, it
was essential that the
new analytics platform
consolidate the disparate
data sources and assets
that were previously the
sole preserve of individual
business units.

FIGURE 1 | M6 new data organization—from silos
to transversal capabilities

BRAND 1 BRAND 2 BRAND 3

DIGITAL SKILLS DIGITAL SKILLSDIGITAL SKILLS

DIGITAL SERVICE CENTER

SALES HOUSE

Decentralized activities
• Product management
• Content personalization
• Data scientist
• Email monetization

Matrix-oriented
• Web analytics & tag management
• DMP/data management monotoring
• internal content exchange
• Data scientist for small brands/BU
• SEO

4 | Accenture and M6 | Monetizing Big Data

Moving from a siloed to a transversal approach was fundamental
in achieving M6’s aim of higher revenue from data. This had clear
implications for the skills and capabilities of M6’s workforce. Accenture
worked with M6 to identify new roles that the organization would
need—e.g. data scientists—and created detailed job descriptions for
M6 to use in its recruitment.

With the data solution in place, the project has entered its third phase,
in which Accenture provides advanced analytics services through the
Accenture Advanced Analytics for Advertising Solution. This solution
is based on an Accenture asset—the Accenture Insights Platform—but
uses unique applications built around the needs of media businesses,
with M6 as a charter client.

Using advanced analytics to better understand M6’s audiences across all
channels and digital touchpoints—from web to mobile—was essential for
the advertising business. This methodology allows M6 to serve viewers
more relevant and personalized content, enabling better viewing and
user experiences. Advanced analytics also enables business process
reporting, data discovery and predictive/prescriptive analytics to support
audience and inventory management—driving higher advertising ROIs.

Using Hadoop as its foundational technology, the platform has advanced
analytics capabilities, such as machine learning, predictive modelling,
and data visualization via intuitive dashboards. Using the Accenture
Advanced Analytics for Advertising Solution means M6 has comprehen-
sive access to the detailed insights it needs to design and deliver
relevant and personalized content and services for its consumers and
advertisers and achieve its goals for data monetization. For example,
Accenture used these analytics to design the most effective incentives
for mandatory sign-on for M6’s digital services, which generated a
wealth of insights for M6 to harness in driving incremental revenues
in line with its targets.

FIGURE 2 | Advanced Analytics for Advertising Solution

BUSINESS REPORTING ADVANCED ANALYTICSDETERMINISTIC
SEGMENTATION

FOUNDATION LAYER FOR ADVERTISING ANALYTICS

EXTERNAL DATA SOURCES

CRM & ID
MANAGEMENT

WEB
ANALYTICSSTBORDER

MANAGEMENTAD SERVERDMP

Using the Accenture
Advanced Analytics
for Advertising Solution
means M6 has
comprehensive access
to the detailed insights
it needs to design and
deliver relevant and
personalized content and
services for its consumers
and advertisers and
achieve its goals for
data monetization.

5 | Accenture and M6 | Monetizing Big Data

As a result of the new solution, the operator was
able to reduce its IVR from seven platforms to one,
simplifying the business processes, improving
customer service, and reducing maintenance costs.
Today, the Dynamic IVR platform supports all
customer segments, both consumer and enterprise,
for inbound and outbound calls, as well as for
technical support, customer care, credit and sales
activities. The outbound channel is also used
for proactive care and up selling.

struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
struct group_info *groups_alloc(int gidsetsize){
 struct group_info *group_info;
 int nblocks;
 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidsetsize;

 group_info->nblocks = nblocks;

 atomic_set(&group_info->usage, 1);

 if (gidsetsize <= NGROUPS_SMALL)

 group_info

struct group_info init_groups = { .usage = ATOMIC_INIT(2) };

struct group_info *groups_alloc(int gidsetsize){

 struct group_info *group_info;

 int nblocks;

 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidset

struct group_info init_groups = { .usage = ATOMIC_INIT(2) };

struct group_info *groups_alloc(int gidsetsize){

 struct group_info *group_info;

 int nblocks;

 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidsetsize;

 group_info->nblocks = nblocks;

 atomic_set(&group_info->usage, 1);

 if (gidset

struct group_info init_groups = { .usage = ATOMIC_INIT(2) };

struct group_info *groups_alloc(int gidsetsize){

 struct group_info *group_info;

 int nblocks;

 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidsetsize;

 group_info->nblocks = nblocks;

 atomic_set(&group_info->usage, 1);

 if (gidset

Accenture Advanced Analytics
for Advertising Solution
The solution supports media companies in maximizing
the success of their data monetization business
objectives. It is a pre-integrated, vendor-agnostic and
highly scalable platform powered by leading analytics
professionals. Its features include:

Rapid time to market | leveraging pre-integrated
assets

Leading analytics assets and services | using
existing, flexible algorithms already developed by
Accenture’s leading data scientists

Reuse investments in legacy analytics | integrates
existing data warehouse and BI applications

Scalable | cloud-based infrastructure using leading
providers

Open, modular and software agnostic

Highly available and secure | 24/7 support from
dedicated operations centres with strict security
procedures

6 | Accenture and M6 | Monetizing Big Data

struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
struct group_info *groups_alloc(int gidsetsize){
 struct group_info *group_info;
 int nblocks;
 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidsetsize;

 group_info->nblocks = nblocks;

 atomic_set(&group_info->usage, 1);

 if (gidsetsize <= NGROUPS_SMALL)

 group_info
struct group_info init_groups = { .usage = ATOMIC_INIT(2) };

struct group_info *groups_alloc(int gidsetsize){

 struct group_info *group_info;

 int nblocks;

 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidset

struct group_info init_groups = { .usage = ATOMIC_INIT(2) };

struct group_info *groups_alloc(int gidsetsize){

 struct group_info *group_info;

 int nblocks;

 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidsetsize;

 group_info->nblocks = nblocks;

 atomic_set(&group_info->usage, 1);

 if (gidset

struct group_info init_groups = { .usage = ATOMIC_INIT(2) };

struct group_info *groups_alloc(int gidsetsize){

 struct group_info *group_info;

 int nblocks;

 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidsetsize;

 group_info->nblocks = nblocks;

 atomic_set(&group_info->usage, 1);

 if (gidset

Results
An agile approach to development enabled Accenture
to work rapidly and iteratively. This made it possible
to demonstrate success quickly, something that was
crucial in ensuring buy-in from M6’s senior manage-
ment. By focusing work on M6’s desired business
outcomes, Accenture and M6 have already achieved
considerable success. As they continue to work
together, they will further enhance M6’s ability to
keep pace with its competitors and differentiate
what it offers to the market. This is an era of fierce
competition for digital consumers’ attention (and
wallets) from traditional broadcasters and digital
natives alike. M6 now has a strong foundation from
which to make rapid progress, with the agility and
responsiveness that are the hallmarks of success in
the digital media world.

7 | Accenture and M6 | Monetizing Big Data

struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
struct group_info *groups_alloc(int gidsetsize){
 struct group_info *group_info;
 int nblocks;
 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidsetsize;

 group_info->nblocks = nblocks;

 atomic_set(&group_info->usage, 1);

 if (gidsetsize <= NGROUPS_SMALL)

 group_info

struct group_info init_groups = { .usage = ATOMIC_INIT(2) };

struct group_info *groups_alloc(int gidsetsize){

 struct group_info *group_info;

 int nblocks;

 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidset

struct group_info init_groups = { .usage = ATOMIC_INIT(2) };

struct group_info *groups_alloc(int gidsetsize){

 struct group_info *group_info;

 int nblocks;

 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidsetsize;

 group_info->nblocks = nblocks;

 atomic_set(&group_info->usage, 1);

 if (gidset

struct group_info init_groups = { .usage = ATOMIC_INIT(2) };

struct group_info *groups_alloc(int gidsetsize){

 struct group_info *group_info;

 int nblocks;

 int i;

 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;

 /* Make sure we always allocate at least one indirect block pointer */

 nblocks = nblocks ? : 1;

 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);

 if (!group_info)

 return NULL;

 group_info->ngroups = gidsetsize;

 group_info->nblocks = nblocks;

 atomic_set(&group_info->usage, 1);

 if (gidset

Contacts
Yannick Sadowy
Client Account Lead for EALA
Communication, Media & Technology
+33 1-56525885
yannick.sadowy@accenture.com

Carlo Iacoboni
Digital Advertising Lead for Europe and
Latin America
Communication, Media & Technology
+39.335.632.7.602
carlo.iacoboni@accenture.com

About Accenture
Accenture is a leading global professional
services company, providing a broad range
of services and solutions in strategy,
consulting, digital, technology and opera-
tions. Combining unmatched experience
and specialized skills across more than
40 industries and all business functions—
underpinned by the world’s largest
delivery network—Accenture works at the
intersection of business and technology
to help clients improve their performance
and create sustainable value for their
stakeholders. With approximately 384,000
people serving clients in more than 120
countries, Accenture drives innovation
to improve the way the world works and
lives. Visit us at www.accenture.com.

Copyright © 2016 Accenture.
All rights reserved.

Accenture, its logo, and
High Performance Delivered
are trademarks of Accenture.

